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A B S T R A C T

Modeling and mapping species distributions are vital to biodiversity conservation, but challenging for data-
limited species whose localities are poorly recorded. Here we examine the utility of three datasets and species
distribution models in conservation of seahorses (Hippocampus spp.), a genus of poorly-recorded marine fishes.
We collated occurrences from field data of species sightings (SS), peer-reviewed literature (PRL), and fishers
local ecological knowledge (LEK) for five seahorse species in China. We modelled seahorse distributions using
different combinations of these datasets. We first compared model performance and predictions between PRL
and LEK, and then evaluated the impact of adding LEK and/or PRL to SS. Our results indicated that LEK provided
higher-resolution maps than PRL and tended to generate slightly better models. There is more predictive
consistency between LEK and PRL on presence-probability maps than on presence/absence maps. Adding LEK
and/or PRL to SS improved model performance across species. Our study suggests that integrating LEK (and PRL)
and limited SS with species distribution models can usefully inform conservation for poorly-recorded species.

1. Introduction

Species distribution maps are vital to biodiversity conservation
(Pimm et al., 2014). Anthropogenic activities have driven incredible
biodiversity loss, which in turn has significant impact on human
society. To protect the threatened wildlife, we need biogeographic
information to assess their conservation status (Mace et al., 2008), and
design nature reserves (Lourie and Vincent, 2004; Micheli et al., 2013).
Wildlife habitat maps are also indispensable for resource management,
as new development projects expand across land and the sea (McShane
et al., 2011; Reis et al., 2012).

Mapping species distributions is challenging for poorly-recorded
species, whose population localities are poorly documented in peer-
reviewed literature or other sources. This difficulty often necessitates
the use of multiple datasets, including new field data. Fine-resolution
(e.g. 10 × 10 m2) species sightings (SS, in the form of GPS coordinates)
from natural history collections or other sources (e.g. citizen science)
are the most frequently-used datasets. But SS collection is often biased
towards easily-accessed regions and common taxa (Phillips et al., 2009;
Robinson et al., 2011). Peer-reviewed literature (PRL) can be a second
dataset, but it may only contribute coarse range maps for poorly-
recorded species. A third source of species data is local ecological
knowledge (LEK), which refers to the knowledge system learnt by
people through interactions with their local environment (Berkes,

1993). Compared with traditional surveys (e.g. transect sampling),
interview-based LEK research can generate cost-effective but often
coarse-resolution (e.g. 10 × 10 km2) datasets (Carter and Nielsen,
2011; Laze and Gordon, 2016).

Species distribution models (SDMs), which predict presence prob-
ability of focal species based on limited species presences/absences and
environmental data, might provide a powerful way to derive spatially-
explicit maps and to inform conservation for poorly-recorded species
(Guisan and Thuiller, 2005; Franklin, 2010). The predictive maps based
on SDMs have facilitated population surveys for rare species (Guisan
et al., 2006; Stirling et al., 2016), and are useful for conservation
planning (Guisan et al., 2013). Some SDMs contain techniques to
examine species-habitat relationships, which are central to ecology
(Guisan and Thuiller, 2005). In literature, there are basically two types
of SDMs regarding the availability of species-absence data: presence-
absence models, and presence-only models (see Franklin, 2010 for a
review). Presence-only models are more suitable to poorly-recorded
species since their absences are hard to determine.

Mapping and modeling species distributions is particularly challen-
ging for poorly-recorded marine species. Marine biota and environ-
mental surveys have historically fallen behind the terrestrial counter-
parts (Costello et al., 2010). Scuba-diving has only been used for
collecting site-level species data since ~1960s (Caddy, 1968), and
remote sensing techniques have only contributed spatial data for
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marine environments since 1980s (Bernstein, 1982; Wentz and Schabel,
2000). The utility of survey techniques (e.g. underwater visual census)
can be restricted by the unique features of marine environment (water
clarity, depth, etc.). These characteristics of ocean systems make it
more difficult to study geographic distributions of marine organisms.

Seahorses (Hippocampus spp.) provide a typical example of rarely-
recorded marine organisms whose distributions are difficult to deter-
mine. These relatively rare, cryptic, and small fishes, are difficult to
detect or survey (Vincent et al., 2011; Aylesworth et al., 2017).
Additionally, seahorses can raft with holdfasts (e.g. seaweed) and
disperse over long distances, although they are generally stationary
(Lourie et al., 2005; Caldwell and Vincent, 2013). Our knowledge about
their distribution ranges is still developing. About 15% of the current
total sightings from our citizen science database (iSeahorse, iseahorse.
org) are located beyond the ranges that we previously knew. To date,
seahorse localities are poorly-recorded in many regions.

China is among the countries where seahorses are poorly-documen-
ted and threatened. Seahorses are distinguished by their heavy use in
Traditional Chinese Medicine (TCM). Every year, millions of dried
seahorses are used in TCM by Chinese people (Vincent et al., 2011). To
date, formal seahorse biogeographic research is rare in China. Six
seahorse species are purportedly present, and probably all are threa-
tened (Wang and Xie, 2009). One of these species, H. kelloggi (great
seahorse), is on China's List of Wildlife under National Protection,
mandating a nationwide ban on its catch and trade by law (MEP, 2002).
The other five species have been proposed to be added to the List,
which is under review (Zhang Chun-Guang, per. comm.). However, the
lack of distribution knowledge of seahorse populations in China's vast
marine territory impedes the protection of these poorly-known animals.

Here we present the first biogeographic study of seahorses in China,
with an aim to inform their conservation. We collate multiple species
datasets (i.e. SS, PRL, and LEK) and environmental data to build and
compare species distribution models. We test whether species data from
PRL and LEK can generate similar predictions of seahorse distributions.
We examine if adding information from LEK and PRL to SS can improve
model performance and predictions. By doing so, our study provides
insights on species data collection and analyzing techniques for
distribution modeling studies on poorly-recorded species.

2. Materials and methods

2.1. Study area

Our study area spans China's coastal waters (17° to 41°N; 106° to
125°E, Fig. 1), which are fringed by the Bohai Sea, Yellow Sea, East
China Sea, and the northern South China Sea. The coastline stretches
across 18,000 km from temperate to tropical zones (see details in Liu,
2013).

2.2. Species distribution model

We used a typical presence-only model, maximum entropy (Maxent,
Phillips et al., 2006), to analyze our data and to predict seahorse
distributions. Maxent produces a habitat suitability map for the focal
species based on a set of related variables (model predictors) and a set
of georeferenced occurrences. Maxent is considered as one of the most
powerful modeling techniques (Hernandez et al., 2006; Phillips et al.,
2006), as it is 1) robust to positional uncertainty/errors in species
occurrences (Graham et al., 2008; Fernandez et al., 2009), 2) suitable
for limited occurrences (e.g. SS dataset in our case), and 3) reliable for
deriving predictive maps with coarse-grain data (Osborne and Leitao,
2009).

2.3. Model predictors

We compiled data for twenty-one variables belonging to three

categories: 1) climate and geophysical suitability (Tyberghein et al.,
2012), 2) food availability, and 3) macro-habitat availability from
online databases (Table S1 in Appendix A). Original data were
interpolated with resolution of 1/12° in latitude and longitude
(~10 km) using Inverse Distance Weighting in an ArcMap (Cheung
et al., 2009). We chose 1/12° as our standard resolution because the
majority of the original data were at this resolution, and it also
represents cells explicit enough for mapping seahorses at the broad
spatial scale of our study area. Since seahorses are typically found in
shallow waters, we used a 200-m depth envelope (commonly consid-
ered to be continental shelf) as the geographic boundary for all
environmental data. By doing so, we can prevent model over-predic-
tion. We then used Pearson correlation coefficients to identify and
exclude highly correlated variables (|r| > 0.7), which were not used
in the model.

2.4. Species data

2.4.1. Species sightings (SS)
We first obtained a total of 33 species sightings (SS) from five online

databases: Global Biodiversity Information Faculty (GBIF, www.gbif.
org), Oceanic Biodiversity Information System (OBIS, www.iobis.org),
FishNet2 (www.fishnet2.net), FishBase (www.fishbase.org), and
iSeahorse (www.iseahorse.org). We then obtained new sightings re-
cords of seahorses from Chinese colleagues, divers, and fishers during
our interview-based research in China (see next paragraph of local
ecological knowledge). We validated the species identification for all
records by checking specimens where possible, using a standard
identification textbook (Lourie et al., 2004). To ensure data quality,
sightings located on land or out of our defined range (i.e. 200-m depth
of China's seas) were not used.

2.4.2. Peer-reviewed literature (PRL)
We extracted data from peer-reviewed literature (PRL) drawn from

the China Knowledge Resource Integrated Database (www.eng.oversea.
cnki.net, see Appendix A), having found little information in western
literature. We emailed authors to request photos of the specimens to
validate their identifications. If specific localities were not documented,
we included the entire study/sampling area described in the paper as
part of the species' range. All species maps from the validated records in
literature were digitalized in an ArcMap.

2.4.3. Local ecological knowledge (LEK)
To derive local ecological knowledge (LEK), we conducted semi-

structured interviews (Huntington, 2000) at 79 fishing ports (Fig. 1)
along the entire coast of China from April to September 2015 (see
protocol in Appendix A). The choice of these sites was based on
comprehensive consultation with four Chinese colleagues and 28 fishers
in the field. At each fishing port, we first chose participants recom-
mended by local fisheries scientists, community leaders, and inter-
viewed fishers. We also haphazardly reached out to other fishers who
were available and knowledgeable (e.g. skippers). We conducted each
semi-structured interview on board a vessel allowing all fishers working
on the boat to participate. This group setting allowed us to cross-
validate data among the fishers. Our interviews covered fishers using
different types of fishing gears (n = 10) in situ.

In each interview, we first identified the seahorses (Fig. 2). We
evaluated available specimens in situ then presented a collection of
seahorse photographs to help participants recall seahorses that they had
sighted. After the interview, we validated the interviews by checking
specimens from other sources at the same site. These sources included
other participants, local seafood landings and markets, and stores at the
same fishing port.

After the taxonomic portion of the interview, we worked with
participants to generate distribution maps of each species (Fig. 3). Local
commercial fishers often use China's fishing-zone maps (Fig. S1 in
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Appendix A), sometimes in a digital version, to guide their fishing
activities, such as locating fishing grounds. Therefore, these maps were
ideal tools to help fishers describe (without drawing) species locations.
We also asked fishers to recall habitat (depth, substrate) or geographic
(distance to landmarks) features of each location if they could. These
additional data were checked against nautical charts prior to analyses
as a manner to test the reliability of fishers' knowledge. If fishers were
not familiar with fishing-zone maps, we presented nautical charts
instead for them to recall species distributions. We used an iPad with
iGIS software to facilitate fishers' mapping in the field, and digitalized
their narrative data in an ArcMap later. As a final step to ensure data
quality, we overlaid all fishers' maps of the same species and only
retained areas including at least two observations.

2.4.4. Occurrence-points sampling from PRL and LEK coarse maps
Given that species distribution models can only use species point

data rather than polygon maps (PRL and LEK original datasets), we

systematically sampled presence points from the PRL and LEK maps. To
do so, we first refined the original irregular polygons (i.e. PRL or LEK
maps) to range maps consisting of cells with our standard resolution (1/
12°) in an ArcMap (see Appendix A).

To generate occurrence points from the coarse range maps, we
adapted a probability-based sampling approach based on habitat
suitability (Niamir et al., 2011). This approach performed better than
another technique, random sampling, in an initial trial (see Appendix
A). The probability-based approach assigns denser occurrence points to
more suitable habitats within the range map, based on the ecological
principle that higher abundance was expected in more suitable areas.
The required habitat suitability was derived from the Maxent model
based on the SS dataset (see 1st scenario in 2.5). We then employed the
spatially-balanced sampling in an ArcMap to generate occurrences from
the range maps of LEK and PRL for each dataset. This probability-based
sampling tool considers sampling probability (i.e. habitat suitability, in
this case) and minimizes spatial autocorrelations among the generated

Fig. 1. Study area displaying the sampled fishing ports (red points) along the coast (including islands) of the People's Republic of China. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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points (Theobald et al., 2007).

2.5. Model scenarios and settings

We executed three model scenarios based on different datasets (and
combinations) for each species (Table 1): 1) a model with only SS data
(1st scenario), 2) three models respectively based on LEK, PRL, and
their combination (LEK & PRL, 2nd scenario), and 3) three models
separately with SS & LEK, SS & PRL, and ALL (i.e. all sources of datasets,
3rd scenario).

To generate pseudo-absence points for each model, we created
explicit bias files to determine sampling background for Maxent
(Phillips et al., 2006). For SS datasets, we defined a buffer zone around
sightings of all species as the common sampling background for each
species. By doing so, the model will generate pseudo-absences only
within a certain distance from seahorse presence points. This can
advance model's ability to discriminate “highly suitable” from “suita-
ble” habitats (i.e. minimizing over-prediction, Mateo et al., 2010),
which is important for mapping distributions for rare species like
seahorses (Zarnetske et al., 2007). We chose 1/4° (~15 nautical miles)
as the buffer size, as it produced models with the smallest variation
among model parameter estimates using different buffer sizes in an
initial trial. Similarly, for LEK (or PRL) datasets, we used the union of
range maps from LEK (or PRL) of all species as the same sampling
background for each species. For each combination of different
datasets, we overlaid the sampling backgrounds from the member
datasets as the new sampling background. Then we created the bias file
based on the sampling background for each model. All the above

processes were done by using the SMDtoolbox (Brown, 2014).
We conducted all models by using the Maxent software (version

3.3.3 k, Phillips et al., 2006). For each model, the number of pseudo-
absence points were kept at default (n < 10,000). We randomly
divided the species data into training and test subsets (75% and 25%
respectively), and replicated the randomizations 15 times. We applied
the regularization multiplier to control for over-parameterization (Crall
et al., 2015).

2.6. Model evaluation and statistics analyses

We used the mean and standard deviation of three statistics as
measures of model performance and variability. The first statistic was
the area under the curve (AUC) of the receiver-operating characteristic
(ROC) plot (Hanley and McNeil, 1982), which is one of outputs of the
Maxent (i.e. test AUC). The ROC plot demonstrates presence/absence
prediction accuracy with all possible thresholds of the probability value
predicted by the model. The AUC of the ROC plot measures model's
general accuracy of both presence and absence predictions. Although
the use of AUC has been criticized (Lobo et al., 2008), it is reliable for
evaluating presence-only models without applying any probability
threshold (Lawson et al., 2014). The second and third statistics were
Sensitivity (true presence rate) and Specificity (true absence rate,
Altman and Bland, 1994). These two are threshold-dependent and
could be better indicators of a model's discriminatory power than the
AUC (Lobo et al., 2008). We used the probability threshold at which
training Sensitivity plus Specificity was maximized (hereafter SSM
threshold) to calculate these two statistics (Liu et al., 2005). In the
2nd scenario of comparison between LEK and PRL, we used SS datasets
as independent test data to estimate Sensitivity and Specificity. The
calculation was realized in R (R Core Team, 2016) based on the output
data from Maxent.

We used Quade tests (Quade, 1979) to examine the effect of using
different datasets (LEK, PRL, LEK & PRL) on model performance and
variability by controlling for species (n = 5) in the 2nd scenario. For
each species, we employed the I similarity statistic (ISS, Warren et al.,
2008) to measure the strength of agreement on presence-probability
maps between LEK and PRL. We derived the presence/absence maps
(SSM thresholds, see above) for LEK and PRL to calculate an agreement
ratio (spatial overlap to spatial union) respectively for the predicted
presence and absence. Both ISS and the two agreement ratios range
from 0 (unmatched) to 1 (fully matched). We then examine the effect of
adding LEK and/or PRL to SS on model performance and variability by
Quade tests based on model results of the 1st and the 3rd scenarios
(Table 1).

Fig. 2. Process of seahorse taxonomic data collection and validation based on fishers'
local ecological knowledge.

Fig. 3. Processes of mapping and validation of seahorse species distributions based on fishers' local ecological knowledge.

X. Zhang, A.C.J. Vincent Biological Conservation 211 (2017) 161–171

164



2.7. Model prediction and ecological interpretation

We followed three steps to determine the presence/absence map for
each species. First, we only considered the four models in the first and
third scenarios based on datasets including SS, given that SS were more
precise than those points downscaled from LEK and PRL maps. Second,
we rejected poorly fitting models (AUC lower than 0.7, Manel et al.,
2001) and derived the presence/absence maps (by SSM threshold) for
the remaining models. Third, we derived an original-data map by
overlaying original SS, LEK, and PRL datasets, and then compared the
original-data map with each of the predictive maps. We finally selected
the predictive map that had a higher number of overlaps with the
original-data map and covered less area. If some of the original
sightings/ranges were not represented by the selected map, we added
the cells occupied by these sightings/ranges to the “selected” map and
labeled them as “omission ranges”.

We derived a species-richness map by stacking the presence-
probability maps instead of the binary presence/absence maps, as
recommended by Calabrese et al. (2014). The presence-probability
map for each species was from the logistic-probability predictions of the
model that generated the “selected” map (hereafter, selected model).
The species-richness map was derived by overlaying these probability
maps in an ArcMap.

We applied the selected model's permutation importance to identify
key environmental factors (Searcy et al., 2016), and the partial response
curves to interpret species ecological niches (Stirling et al., 2016).

3. Results

3.1. Species data

We obtained a total of 55 species sightings (SS), 463 fishers' maps
(LEK), and 42 literature maps (PRL) across the same five species
(Table 2, see Figs. S2–S4 in Appendix B). Four other species were
reported but not validated (see details in Appendix B and Table S2
therein). We excluded these species and their maps (21% of total maps)
from model datasets. Among the valid species, H. trimaculatus was the
most frequently sighted in SS dataset and the most frequently reported
in the LEK dataset. Hippocampus mohnikei was the most frequently
recorded in PRL dataset. All LEK and PRL data were range maps coarser
than our mapping resolution, but LEK were finer (LEK:

1177 ± 1115 km2, PRL: 12,453 ± 11,630 km2). We generated occur-
rence points (n = 50–200, Table 2) from the coarse-grain maps (LEK
and PRL) by PBS approach. The total number of points differed among
species given the different sizes of total area covered by original maps.
A minimum of 50 points and a maximum of 200 points were chosen to
build robust models and minimize spatial autocorrelation after initial
trials.

3.2. Local ecological knowledge (LEK) vs. peer-reviewed literature (PRL)

We found that although LEK tended to produce better models than
PRL and LEK & PRL (Fig. 4), the differences were not statistically
significant. The highest AUC was obtained by LEK for all species except
H. trimaculatus (Fig. S5 in Appendix B). The highest values of true
presence rate (Sensitivity) were derived from LEK for all species but H.
kelloggi (Fig. S5). The highest values of true absence rate (Specificity)
were also generated by LEK datasets for all species except H. mohnikei
and H. kuda (Fig. S5). All model performance measures (AUC mean and
SD, Sensitivity, and Specificity) across species were not statistically
different among the three datasets (LEK vs. PRL vs. LEK & PRL, Quade
tests, all p > 0.05).

Our result indicated that LEK and PRL were generally consistent on
model predictions when tested on probability maps, but they did not
match well on predicted distributions. The I similarity statistics were
medium to high across the five species (0.571–0.853, Table 3),
suggesting a good agreement on the predictive probabilities between
LEK and PRL. In contrast, the Presence agreements between model
results of the two datasets were generally low (Mean = 21.3%),
although the Absence agreements were relatively high (Mean = 71.9%,
Table 3).

3.3. Effects of adding species locations from coarse-grain data (LEK and
PRL) to species sightings (SS)

We found that adding LEK and/or PRL to SS generally derived better
predictive models than using SS alone (Fig. 5 left), although the effects
differed among the measures. We detected significant differences on
Sensitivity (true presence rate) among datasets (Quade tests, p < 0.05,
n = 5), although not on AUC (p = 0.115) or Specificity (true absence
rate; p= 0.108). Sensitivity mean value for SS dataset was significantly
lower than those for SS & PRL and SS & LEK (both p < 0.05), but not

Table 1
The three model scenarios tested in the study. Abbreviation: SS, species sightings; LEK, local ecological knowledge; PRL, peer-reviewed literature; ALL, all data combined (SS, LEK, and
PRL); AUC, area under the curve.

Model scenario Dataset Model measure Statistical analysis Aim

1st scenario SS AUC, sensitivity, specificity – To derive probability map; to examine effects of adding LEK and/or PRL
data to SS when combined with the 3rd Scenario

2nd scenario LEK, PRL, LEK & PRL AUC, sensitivity, specificity;
I similarity statistic, presence
agreement, absence agreement

Quade test To compare model performance and results between LEK and PRL

3rd scenario SS & LEK, SS & PRL,
ALL

AUC, sensitivity, specificity Quade test To examine effects of adding LEK and/or PRL data to SS when combined
with the 1st Scenario

Table 2
Summary of five Chinese seahorse species with the frequency of records (Frequency), the total number of maps (Maps), and the total amount of points (Points) from three sources: species
sightings, local ecological knowledge, and peer-reviewed literature. For the latter two, the points were generated by the downscaling technique based on original maps.

Seahorse species Species sightings Local ecological knowledge Peer-reviewed literature

Frequency Points Frequency Maps Points Frequency Maps Points

H. kelloggi 10.9% 6 13.4% 37 100 11.8% 4 100
H. kuda 27.3% 15 11.2% 31 50 5.9% 2 50
H. mohnikei 14.5% 8 37.1% 103 100 82.4% 28 100
H. spinosissimus 9.1% 5 18.3% 51 100 2.9% 1 100
H. trimaculatus 38.2% 21 87.0% 241 200 8.8% 3 200

X. Zhang, A.C.J. Vincent Biological Conservation 211 (2017) 161–171

165



for ALL (p = 0.07). Therefore, adding LEK or PRL, but not both, to SS
could significantly improve presence prediction. Model general perfor-
mance (AUC mean) tended to improve by adding LEK and/or PRL
(Fig. 5 left), while absence prediction (Specificity mean) only tended to
improve by adding LEK alone (Fig. 5 left).

For model variability, we obtained similar but more consistent
results on different measures (Fig. 5 right). We examined statistical
differences on standard deviations of all measures (AUC, Sensitivity,
and Specificity) among the compared datasets (Quade tests, all
p < 0.05, n= 5). The standard deviations of AUC and Sensitivity for
SS dataset were significantly higher than those for the others (posthoc-
Quade test, all p < 0.05). The standard deviation of Specificity for SS
dataset was significantly higher than SS & PRL and ALL (both
p < 0.05), but not SS & LEK (p= 0.06). These results revealed that
adding LEK and/or PRL reduced model variability on predicting
presence; while only adding PRL or LEK & PRL data decreased model
variability on predicting absence.

3.4. Model prediction

The predictive maps indicated that these five seahorse species were
generally divergent in spatial distributions, with more species located in
the south (Fig. 6). We derived presence/absence maps (Fig. 6a–e) and
presence-probability maps (Fig. S6 in Appendix B) based on SS & LEK

datasets for all species but H. mohnikei, for which ALL dataset was used.
Stacking the presence-probability maps derived a species richness
ranging from 0.05 to 3.13, which were then rounded to the nearest
integer (i.e. 0 to 3, Fig. 6f). That resulted in an area of 70.3% of our
defined shallow seas was occupied by only one seahorse species, 2.1%
by two species together, and 0.1% by three species together. Different
seahorse species mainly co-existed in the South, especially the eastern
Hainan Island and the Penghu Archipelago (Taiwan Province, Fig. 6f).

3.5. Parameter estimation and species ecological niches

We selected eight predictors from the original twenty-one factors
(Table 4; Table S1 in Appendix A). The rest eleven predictors were
removed since they were highly correlated with one of remaining eight
predictors (Pearson correlation test, |r| > 0.7; see details in Table S1).
The ecological niches of different species were reflected in the response
curves on the selected environmental predictors (Figs. S7–S14 in
Appendix B). Spatial autocorrelation was low (Moran's I= 0.01 to
0.09) in the model datasets for all species, which justified the use the
model results to interpret predictor importance and species ecological
niches.

The importance of different predictors varied among species, with
sea surface temperature (SST mean) generally the most influential
variable (Table 4). Hippocampus mohnikei was the only species that was
more likely to occur in colder waters (Fig. S7), which might explain the
significant spatial separation between H. mohnikei and the other four
species. Species niche separation was also reflected on other predictors.
For example, compared with other species, the presence probabilities of
H. kuda, H. mohnikei, H. trimaculatus were higher in shallower water
closer to the shore (Figs. S8 & S9).

4. Discussion

Our study demonstrated that spatially-explicit species maps of
poorly-documented species can be derived by integrating readily
available data with species distribution models. Lacking explicit
occurrence maps is a common challenge for conservation planning for
poorly-recorded organisms (Rondinini et al., 2006; Levin et al., 2014).
We indicated that valuable species data could be derived from local
ecological knowledge (LEK) and peer-reviewed literature (PRL), when
species sightings (SS) were rare. By integrating different species
datasets with a presence-only model (i.e. Maxent), we illustrated that
it is beneficial to add LEK and/or PRL to the limited SS. These findings
are encouraging given the need to inform conservation actions for
rarely-studied species (Rondinini et al., 2006), but the financial and
temporal constraints on data collection (Anadón et al., 2009).

We demonstrated that fishers can provide species-level maps for
seahorse species in China, a capacity which is not universally held by
fishers (Aylesworth et al., 2017). The divergence might relate to fisher
interest, seahorse morphology, and overlaps in seahorse distributions.
For instance, in Thailand, fishers were poor at distinguishing species
and may have lacked incentives to care (Aylesworth et al., 2017). In
contrast, Chinese fishers may benefit financially from species identifi-
cation, for large or smooth seahorses fetched higher prices according to
respondents. In Thailand, morphological divergences among the seven
species may be difficult to differentiate, whereas the five Chinese
species have apparent differences on species-specific features, body
size, and smoothness (see details in Appendix B and Figs. S15 & S16
therein, and Lourie et al., 2004). In the Thai study, there was likely
considerable overlap in seven seahorse species' distributions across the
five degrees of latitude (5–10°N) in a tropic zone, whereas the five
species in China were apparently more dispersed across the 24° of
latitude (17° to 41°N). Fishers in our study only mentioned a maximum
of two species each, suggesting little overlap.
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Fig. 4. Boxplots of model performance and variability of Maxent models generated from
three different datasets (PRL, LEK, LEK & PRL) based on four measures: AUC (area under
the curve) mean and SD (standard deviation), Sensitivity (true presence rate), and
Specificity (true absence rate). PRL, peer-reviewed literature data; LEK, local ecological
knowledge data; LEK & PRL, the combination of the two.

Table 3
Estimates of agreements on predictive maps between models of local ecological knowl-
edge and models of peer-reviewed literature across the five seahorse species, based on
three different measures: I similarity statistic, presence agreement, and absence agree-
ment.

Species I similarity statistic Presence agreement Absence agreement

H. kelloggi 0.571 12.0% 64.7%
H. kuda 0.804 7.1% 86.1%
H. mohnikei 0.681 26.7% 54.0%
H. spinosissimus 0.778 16.6% 75.6%
H. trimaculatus 0.853 44.3% 78.9%
Mean 0.737 21.3% 71.9%

X. Zhang, A.C.J. Vincent Biological Conservation 211 (2017) 161–171

166



4.1. Seahorse species distributions

The distribution patterns for the five species in China are generally
consistent with counterparts in other regions. As in Peninsular Malaysia
(Choo and Liew, 2003), we found that H. kelloggi were more likely to
occur in deep (> 30 m) offshore waters, and H. kuda was patchily
restricted to shallow inshore waters in China. Hippocampus mohnikei,
was largely clumped in China's temperate zone, as in Japan (Lourie
et al., 2004), and Korea (Choi et al., 2012). But this species could
occasionally occur in China's warmer regions extending to Southeast
Asian countries (see Aylesworth et al., 2016 and references therein).
Hippocampus spinosissimus and H. trimaculatus were more likely to be
sympatric, and less patchy than the other three species (Choo and Liew,
2003; Lawson et al., 2015). Hippocampus trimaculatus also had the
widest habitat, and was relatively more abundant than the other species
in bycatch (Choo and Liew, 2003). We noted that Chinese seahorse
populations were not likely to be found in estuaries, in contrast to its

Malaysian counterparts. A possible explanation might be the relatively
higher environmental stress in China's estuaries (e.g. pollution, SOA,
2012).

Our study indicated that seahorse distributions are highly correlated
with ocean temperature at a large spatial scale, in line with many other
marine taxa (Tittensor et al., 2010). As ectothermic fish, seahorses are
expected to require suitable water temperatures to sustain their
metabolism and reproduce (Beitinger and Fitzpatrick, 1979). This
temperature suitability could vary among species as indicated in our
study and reported from studies in seahorse aquaculture (Koldewey and
Martin-Smith, 2010). Given China's seas are among the world's most
rapid warming zones (Belkin, 2009), a further study to explore the
impact of global warming on seahorse distributions in China would be
interesting and meaningful.

Fig. 5. Boxplots of model performance (mean, left panel) and variability (SD, standard deviation; right panel) measured with the AUC (area under the curve), Sensitivity (true presence
rate), and Specificity (true absence rate) among all five seahorse species, based on four different datasets: SS, species sightings; SS & PRL, sightings plus peer-reviewed literature; ALL,
sightings plus peer-reviewed literature plus local ecological knowledge; and SS & LEK, sightings plus local ecological knowledge.
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Fig. 6. Predicted distribution maps of a) H. kelloggi, b) H. kuda, c) H. mohnikei, d) H. spinosissimus, e) H. trimaculatus, and f) species richness of seahorses in China. Omission range or point
represent model predictive errors. AUC, area under the curve; Sensitivity, true presence rate; Specificity, true absence rate.
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4.2. Limitations

The low modeling importance of macro-habitat and the derived
species-habitat relations should be viewed with caution, given the
constraints on our data availability and spatial scale. First, the macro-
habitat datasets we used here were largely drawn from global sources,
and thus they might not have good coverage or resolutions in China's
seas. Second, we learnt from fishers that Chinese seahorses use various
other macro-habitats, including macro-algae, sea fans, and artificial
structures (e.g. mussel farms, also see Aylesworth et al., 2016).
However, we were unable to obtain these habitat data for China. On
the other hand, the importance of macro-habitats might be more
prominent at a smaller spatial scale (e.g. a lagoon), as found in
European seahorses (Curtis and Vincent, 2005) and reef fishes
(Komyakova et al., 2013). To clarify the truth, a study in multiple
spatial scales with more comprehensive and explicit macro-habitat
variables could be helpful.

4.3. Implications for conservation and management in China

Our new spatially-explicit maps for five seahorse species across
China can be used for conservation and management in at least four
ways. First, the predictive maps can guide local authorities and
researchers to identify more specific locations of seahorse populations
for further conservation actions (e.g. protected areas). Second, Chinese
authorities can use our maps to protect seahorses through fisheries
management. For instance, fisheries officers can explore overlap
between seahorse distribution maps and fishing-zone maps to identify
locations, where reducing or relocating fishing activities could max-
imize the benefit for seahorse conservation (Foster and Arreguin-
Sánchez, 2014). Third, local law enforcement officers can identify
localities (e.g. fishing ports) that are close to seahorse habitats to
effectively strike against illegal fishing and trade in seahorses. Fourth,
our maps come timely to serve China's ongoing coastal ecological-
redline planning, which aims to protect coastal waters with significant
ecological importance (Peng et al., 2016). Given that seahorses are
found in various coastal ecosystems, protecting seahorses means
protecting these critical waters. We think a planning includes seahorse
habitats could be ecologically meaningful and beneficial to China's
marine systems.

4.4. Integrating multiple datasets in SDM research

Among the approaches used in this study, we adapted a technique
especially applicable for poorly-recorded species to address the coarse-
grain maps in SDM research. The use of LEK in modeling distributions is
a common challenge in both terrestrial and marine systems. Local
citizens could only provide coarse-range maps for the focal organisms
(Bergmann et al., 2004; Carter and Nielsen, 2011; Aylesworth et al.,
2017; Laze and Gordon, 2016). Downscaling techniques are thus vital
to generate finer-resolution data from coarse-grain maps like LEK. We

adapted the downscaling technique of Niamir et al. (2011), which used
expert knowledge to determine habitat suitability for each species.
Expert knowledge may be only available for well-known organisms
(Murray et al., 2009; Niamir et al., 2011), and not for rarely-studied
ones like Chinese seahorses. To fill the gap, we used the Maxent model
to generate habitat suitability, as it only requires a small number of
species sightings (n ≥ 5). This advantage may make our technique
more applicable to poorly-documented species, which was rarely
addressed in literature.

Our study indicated that integrating multiple datasets in predicting
distributions for poorly-recorded species is beneficial, but it should be
done with appropriate datasets combinations. We demonstrated that
integrating LEK with PRL should be taken with caution, as it may not
necessarily improve model performance. In our study, both LEK and
PRL occurrences were sourced from coarse-grain maps, which were not
very consistent in space. Previous studies of comparing LEK with data
from traditional biological surveys have also shown similar mismatch
on other species (Thornton and Scheer, 2012). Combining species data
from “inconsistent” sources might cumulate spatial variance. Besides,
given both LEK and PRL are likely coarse maps, the derived occurrences
could include some spatial errors. This is especially true for PRL maps in
our study (10 times coarser than LEK maps, on average). Both reasons
above could increase model residual and degrade model performance
(Graham et al., 2008). We suggest future studies, which aim to integrate
datasets from different sources (especially coarse-grain data), better
compare different scenarios as we executed to identify the best datasets
combinations and model predictions.

We highlight the possible utility of LEK in species distribution
modeling for poorly-recorded marine species, in line with similar
studies on terrestrial counterparts (Irvine et al., 2009; Anadón et al.,
2010; Laze and Gordon, 2016). As acknowledged in terrestrial studies
(Anadón et al., 2010), we think that LEK can be a cost-effective data
source for modeling poorly-recorded species in marine systems. In
addition, LEK can provide information to potentially improve model
predictions. For instance, with the key information about physical
features (e.g. fence, roads) and weightings of environment factors,
Irvine et al. (2009) significantly improved model predictions of deer
(Cervus elaphus). In our study, local fishers have sighted seahorses often
co-occurring with sea fans in bycatch, and clumps of juvenile seahorses
drifting in water column with branches of macro-algae (Fig. B16 in
Appendix B). These LEK data suggest that other related macro-habitats
variables if available might derive better predictions.

4.5. The importance of spatially-explicit maps of poorly-recorded species

Spatially-explicit biogeographic maps for poorly-recorded species
can help inform conservation actions. In particular, greater detail in
spatially-explicit biogeographic maps can improve conservation plan-
ning (Rondinini et al., 2006). For instance, species of concern can
benefit from fine-grain resolution when exploring overlaps between
their distributions and protected areas (Rondinini et al., 2006; Pimm

Table 4
Selected model predictors and their relative importance (%) for the model of each species, based on analysis of variable contributions in the Maxent model. Predictors were ranked by the
average importance across the five species.

Predictors Predictor importance % in modeling for each species

H. kelloggi H. kuda H. mohnikei H. spinosissimus H. trimaculatus Mean

Sea surface temperature 65.6 46.2 72.2 47.6 58.2 58.0
Distance to shore 2.4 31 16.8 2.2 17.6 14.0
Calcite concentration 11.3 14.3 2 20.3 7.4 11.1
Silicate concentration 16.1 4.4 2.8 10.7 5.1 7.8
Depth 0.7 1.9 4.4 1.1 7 3.0
pH 1.9 1.3 0.5 10.6 0.3 2.9
Primary productivity 2.2 0.3 0.6 6.7 3.1 2.6
Macro-habitat 0.6 0.6 0.8 0.9 1.3 0.8
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et al., 2014). The corollary is that fine-resolution distribution maps of
focal species can inform us of conservation gaps, where actions should
be taken. The ability to develop such spatially-explicit maps for poorly-
known species should allow protective measures even as knowledge is
being improved. Such potential may be particularly important in the
many biodiverse countries (e.g. China) with limited biogeographic data
and resources (Liu, 2013). In such instances tapping into diverse
sources of information (including local ecological knowledge) can
create valuable species distribution models and predictive maps.
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